Result for 2983A96216AD7CB1D249A6AF3557D75F4A9ABFAF

Query result

Key Value
FileName./usr/bin/DBwipe
FileSize83448
MD585F987C6E280725E0E33EC86BAF19A75
SHA-12983A96216AD7CB1D249A6AF3557D75F4A9ABFAF
SHA-2567D4C633D70E5315F43D6E6B8AADF650C434D4663EEEB0092D4CA2EF2A107FE7A
SSDEEP1536:mtjQezGWlUgMKtmksRpKNgiX50bL6ulqJ7p8UbHUl5QD:m6eft0pKjXad
TLSHT1C4832A78BB83C4F0F25345FD8A85E36B29309905E113F6E1FB0A2AD979393561E26271
hashlookup:parent-total2
hashlookup:trust60

Network graph view

Parents (Total: 2)

The searched file hash is included in 2 parent files which include package known and seen by metalookup. A sample is included below:

Key Value
FileSize197304
MD51535E9CCF2340817963470FD0F56D6E4
PackageDescriptionmanage nucleotide sequencing read data To facilitate the multiple phases of the dazzler assembler, all the read data is organized into what is effectively a database of the reads and their meta-information. The design goals for this data base are as follows: * The database stores the source Pacbio read information in such a way that it can re-create the original input data, thus permitting a user to remove the (effectively redundant) source files. This avoids duplicating the same data, once in the source file and once in the database. * The data base can be built up incrementally, that is new sequence data can be added to the data base over time. * The data base flexibly allows one to store any meta-data desired for reads. This is accomplished with the concept of *tracks* that implementors can add as they need them. * The data is held in a compressed form equivalent to the .dexta and .dexqv files of the data extraction module. Both the .fasta and .quiva information for each read is held in the data base and can be recreated from it. The .quiva information can be added separately and later on if desired. * To facilitate job parallel, cluster operation of the phases of the assembler, the database has a concept of a *current partitioning* in which all the reads that are over a given length and optionally unique to a well, are divided up into *blocks* containing roughly a given number of bases, except possibly the last block which may have a short count. Often programs can be run on blocks or pairs of blocks and each such job is reasonably well balanced as the blocks are all the same size. One must be careful about changing the partition during an assembly as doing so can void the structural validity of any interim block-based results.
PackageMaintainerDebian Med Packaging Team <debian-med-packaging@lists.alioth.debian.org>
PackageNamedazzdb
PackageSectionscience
PackageVersion1.0+git20201103.8d98c37-1+deb11u1
SHA-1E11E77DF9876282D542EEC90E45A17989D79FB11
SHA-2569E6FEE330746CDB275714712ED61FE134EB4FD3A6CB24F3E095B681F7D133D19
Key Value
FileSize196772
MD5FCEA199760B1A84FC51A9564D5671B1C
PackageDescriptionmanage nucleotide sequencing read data To facilitate the multiple phases of the dazzler assembler, all the read data is organized into what is effectively a database of the reads and their meta-information. The design goals for this data base are as follows: * The database stores the source Pacbio read information in such a way that it can re-create the original input data, thus permitting a user to remove the (effectively redundant) source files. This avoids duplicating the same data, once in the source file and once in the database. * The data base can be built up incrementally, that is new sequence data can be added to the data base over time. * The data base flexibly allows one to store any meta-data desired for reads. This is accomplished with the concept of *tracks* that implementors can add as they need them. * The data is held in a compressed form equivalent to the .dexta and .dexqv files of the data extraction module. Both the .fasta and .quiva information for each read is held in the data base and can be recreated from it. The .quiva information can be added separately and later on if desired. * To facilitate job parallel, cluster operation of the phases of the assembler, the database has a concept of a *current partitioning* in which all the reads that are over a given length and optionally unique to a well, are divided up into *blocks* containing roughly a given number of bases, except possibly the last block which may have a short count. Often programs can be run on blocks or pairs of blocks and each such job is reasonably well balanced as the blocks are all the same size. One must be careful about changing the partition during an assembly as doing so can void the structural validity of any interim block-based results.
PackageMaintainerDebian Med Packaging Team <debian-med-packaging@lists.alioth.debian.org>
PackageNamedazzdb
PackageSectionscience
PackageVersion1.0+git20201103.8d98c37-1
SHA-14B24E7FF793FE24000A0957A78BE110D5711B01C
SHA-256659D3719BBE6B8A14A9D60B9C0C706F8D52C73F26B371E29DE079B9999916DA3