Result for 3606E9486A22BE61B6FD39F7BDE33243CB27B8A9

Query result

Key Value
CRC326695861A
FileName./usr/share/doc/weka/examples/vote.arff
FileSize40261
MD53C16059C5B92F6551F720F97D0ECCC09
OpSystemCode{'MfgCode': '1006', 'OpSystemCode': '362', 'OpSystemName': 'TBD', 'OpSystemVersion': 'none'}
ProductCode{'ApplicationType': 'Data', 'Language': 'English', 'MfgCode': '80467', 'OpSystemCode': '884', 'ProductCode': '13571', 'ProductName': 'Weka', 'ProductVersion': '3.6'}
SHA-13606E9486A22BE61B6FD39F7BDE33243CB27B8A9
SHA-256EE647A77207729D73D02CEA20646AFCD274FE9DE95711CBF9909C903636CD65F
SSDEEP192:AE6GnPdsfiXR3/G8qE3YHq7ikfLhdHS9LPucAer:kGPi6R3eXCYHq7ikfLhdHSkBo
SpecialCode
TLSHT1F10390E25A05EDCF17498B73B13504CE82565A9F164CE23CF48E60E50226DAF05BEEE7
dbnsrl_modern_rds
insert-timestamp1646998219.6126204
sourceNSRL
hashlookup:parent-total36
hashlookup:trust100

Network graph view

Parents (Total: 36)

The searched file hash is included in 36 parent files which include package known and seen by metalookup. A sample is included below:

Key Value
MD5FB0FDC148881D2057ED6FD3B3B86138D
PackageArchnoarch
PackageDescriptionWeka is a collection of machine learning algorithms for data mining tasks. The algorithms can either be applied directly to a dataset or called from your own Java code. Weka contains tools for data pre-processing, classification, regression, clustering, association rules, and visualization. It is also well-suited for developing new machine learning schemes.
PackageMaintainerFedora Project
PackageNameweka
PackageRelease1.fc18
PackageVersion3.6.8
SHA-10B8CB68B514D3C4025099E0DB6A462AAED99D026
SHA-2563D35131B632B13C0EEE5EE12D6A525DE6C4F90FEF6ED1F3839056C2AA131FB6A
Key Value
MD56CA942E1743D91DED4B1BFD08D9AF700
PackageArchx86_64
PackageDescriptionAn R interface to Weka (Version 3.7.10). Weka is a collection of machine learning algorithms for data mining tasks written in Java, containing tools for data pre-processing, classification, regression, clustering, association rules, and visualization. Package RWeka contains the interface code, the Weka jar is in a separate package RWekajars. For more information on Weka see <http://www.cs.waikato.ac.nz/~ml/weka/>.
PackageNameR-RWeka
PackageRelease1.123
PackageVersion0.4.39
SHA-10E40454308D759B3F7D76AC6CA2EE8C7B9BE7D65
SHA-256DD04AF53C3BA3674FEC64E770440628FD9F92B9E062972FDF719109A60E0167A
Key Value
MD526BC7C70CBB10CC5B371354932D201BA
PackageArchx86_64
PackageDescriptionAn R interface to Weka (Version 3.7.10). Weka is a collection of machine learning algorithms for data mining tasks written in Java, containing tools for data pre-processing, classification, regression, clustering, association rules, and visualization. Package RWeka contains the interface code, the Weka jar is in a separate package RWekajars. For more information on Weka see <http://www.cs.waikato.ac.nz/~ml/weka/>.
PackageNameR-RWeka
PackageRelease1.14
PackageVersion0.4.39
SHA-1200251EF4DF12DC8E8A4ED2D0B62AA914777F89E
SHA-256F638E265C4C7F06E3F5FFC874B2D359977109BC2FC2510E031892828C5C27096
Key Value
MD5F682D20D190BC1A32EE58A4D1E90DCA9
PackageArchx86_64
PackageDescriptionAn R interface to Weka (Version 3.7.10). Weka is a collection of machine learning algorithms for data mining tasks written in Java, containing tools for data pre-processing, classification, regression, clustering, association rules, and visualization. Package RWeka contains the interface code, the Weka jar is in a separate package RWekajars. For more information on Weka see <http://www.cs.waikato.ac.nz/~ml/weka/>.
PackageNameR-RWeka
PackageReleaselp151.1.58
PackageVersion0.4.39
SHA-1222C4EADFBCFCE6387D5FE33A3D3EA2DAAD80639
SHA-25609DB681F992626D0F6764B66D264E3AE03692E9E910604B81D4CFFF04990C435
Key Value
MD55EA8EB2849C90A6BDD85FC2DF0DA2A87
PackageArchi586
PackageDescriptionAn R interface to Weka (Version 3.7.10). Weka is a collection of machine learning algorithms for data mining tasks written in Java, containing tools for data pre-processing, classification, regression, clustering, association rules, and visualization. Package RWeka contains the interface code, the Weka jar is in a separate package RWekajars. For more information on Weka see <http://www.cs.waikato.ac.nz/~ml/weka/>.
PackageNameR-RWeka
PackageRelease1.93
PackageVersion0.4.39
SHA-13154BF2E77CA73DF6CDA29FA429B2E206CA03B51
SHA-25627D1DA71A1D553BF5D66C4E006B817B8A7ACF516B4F5A5FDCF60F49374EE8D69
Key Value
MD53E729A70F089D3A2D172340F3C5596CE
PackageArchnoarch
PackageDescriptionWeka is a collection of machine learning algorithms for data mining tasks. The algorithms can either be applied directly to a dataset or called from your own Java code. Weka contains tools for data pre-processing, classification, regression, clustering, association rules, and visualization. It is also well-suited for developing new machine learning schemes.
PackageMaintainerFedora Project
PackageNameweka
PackageRelease1.fc18
PackageVersion3.6.8
SHA-138CE31307DA5279F71EEB195D526690BA3B04754
SHA-25688FD166B8C2DDA537315061B89D2E28612147FB37D805110A0F6F829CFC1069C
Key Value
MD55C59A92767C1A29798188DA0EA0BF204
PackageArchnoarch
PackageDescriptionWeka is a collection of machine learning algorithms for data mining tasks. The algorithms can either be applied directly to a dataset or called from your own Java code. Weka contains tools for data pre-processing, classification, regression, clustering, association rules, and visualization. It is also well-suited for developing new machine learning schemes.
PackageMaintainerFedora Project
PackageNameweka
PackageRelease4.fc21
PackageVersion3.6.8
SHA-13B0CF102EBA4973CCD9581B0EDDBC5F3452E36F7
SHA-2569C1B0DBE449D56866C95B290A7B1DB976F0CC1F5D6B3D893A64920AFECC378FA
Key Value
FileSize6627440
MD566104E721852F1E0161A50B89B207C28
PackageDescriptionMachine learning algorithms for data mining tasks Weka is a collection of machine learning algorithms in Java that can either be used from the command-line, or called from your own Java code. Weka is also ideally suited for developing new machine learning schemes. . Implemented schemes cover decision tree inducers, rule learners, model tree generators, support vector machines, locally weighted regression, instance-based learning, bagging, boosting, and stacking. Also included are clustering methods, and an association rule learner. Apart from actual learning schemes, Weka also contains a large variety of tools that can be used for pre-processing datasets. . This package contains the binaries and examples.
PackageMaintainerDebian Java Maintainers <pkg-java-maintainers@lists.alioth.debian.org>
PackageNameweka
PackageSectionscience
PackageVersion3.6.14-3
SHA-1413578EA72D0F2A5014C6B028565B5B5B69E7E30
SHA-25658EA5EC3B42CA9719BE5756D1BD64EBED0E69D16D6FFFA200B3CEBF4CCCCAB16
Key Value
MD5F8ECCCB2C60182DEE962C708AD1428D3
PackageArchnoarch
PackageDescriptionWeka is a collection of machine learning algorithms for data mining tasks. The algorithms can either be applied directly to a dataset or called from your own Java code. Weka contains tools for data pre-processing, classification, regression, clustering, association rules, and visualization. It is also well-suited for developing new machine learning schemes.
PackageMaintainerFedora Project
PackageNameweka
PackageRelease5.fc23
PackageVersion3.6.8
SHA-1490362BB050D4F4F4099C962EC3664270397157F
SHA-2560B77E79ACB6EB167DDE70BDD25D8EABA1BF085BCFCD510A45476E0A30E02FB5E
Key Value
MD5FFE5F74D9B859E0DE0FD6CE84F8ABB78
PackageArchnoarch
PackageDescriptionWeka is a collection of machine learning algorithms for data mining tasks. The algorithms can either be applied directly to a dataset or called from your own Java code. Weka contains tools for data pre-processing, classification, regression, clustering, association rules, and visualization. It is also well-suited for developing new machine learning schemes.
PackageMaintainerFedora Project
PackageNameweka
PackageRelease4.fc21
PackageVersion3.6.8
SHA-151D4E7F1F480CF75BF26A21EEC6735A477EA8C58
SHA-2569163B9492801A833EB068B42725FE300FB9994DE3BAA416F71890B51C5A76C5B