Result for 37AAA627DA2F2ED8C223BF500C59F9A0C685EFCE

Query result

Key Value
FileName./usr/bin/scspell-3.6
FileSize382
MD5101EFC5B53D2E8D96D284737F2455C8D
SHA-137AAA627DA2F2ED8C223BF500C59F9A0C685EFCE
SHA-2561433678DD874F43B9B29F9A2E9EF6B8A18761AE7AECAB226C5D62434BF2498CD
SSDEEP6:HWaHwelgxtKX+eWoK4TCQXFKWoGgsVAoLGtrVV1CFAjaj+iQDF7M1tQDaSbrVV1I:HsKuJoK4OCoJzoi9VrCF2aGNM1m2SfVo
TLSHT1CCE06823C873DEB255B6078B66302062220A0E726A22690971C48A2DABC03D12E38E29
hashlookup:parent-total11
hashlookup:trust100

Network graph view

Parents (Total: 11)

The searched file hash is included in 11 parent files which include package known and seen by metalookup. A sample is included below:

Key Value
MD59D32610277001C82C7E2888F0970E8CC
PackageArchnoarch
PackageDescriptionScspell is a spell checker for source code. This is an unofficial fork (of https://launchpad.net/scspell) that runs on both Python 2 and 3. Scspell does not try to be particularly smart--rather, it does the simplest thing that can possibly work: 1. All alphanumeric strings (strings of letters, numbers, and underscores) are spell-checked tokens. 2. Each token is split into one or more subtokens. Underscores and digits always divide tokens, and capital letters will begin new subtokens. In other words, ``some_variable`` and ``someVariable`` will both generate the subtoken list {``some``, ``variable``}. 3. All subtokens longer than three characters are matched against a set of dictionaries, and a match failure prompts the user for action. When matching against the included English dictionary, *prefix matching* is employed; this choice permits the use of truncated words like ``dict`` as valid subtokens. When applied to code written in most popular programming languages while using typical naming conventions, this algorithm will usually catch many errors without an annoying false positive rate. In an effort to catch more spelling errors, Scspell is able to check each file against a set of dictionary words selected *specifically for that file*. Up to three different sub-dictionaries may be searched for any given file: 1. A natural language dictionary. (Scspell provides an American English dictionary as the default.) 2. A programming language-specific dictionary, intended to contain oddly-spelled keywords and APIs associated with that language. (Scspell provides small default dictionaries for a number of popular programming languages.) 3. A file-specific dictionary, intended to contain uncommon strings which are not likely to be found in more than a handful of unique files.
PackageMaintainerhttps://bugs.opensuse.org
PackageNamepython3-scspell3k
PackageReleasebp153.1.15
PackageVersion2.2
SHA-1B364D7D8B96C7945BB29FDCBAC9E78B0B82C79DF
SHA-256EFB867F5801E68695B002390E019C684BA777C5D356BB5E62867096076A3A133
Key Value
MD555F43B6B78553E3D8D03AF9DC29129BB
PackageArchnoarch
PackageDescriptionScspell is a spell checker for source code. This is an unofficial fork (of https://launchpad.net/scspell) that runs on both Python 2 and 3. Scspell does not try to be particularly smart--rather, it does the simplest thing that can possibly work: 1. All alphanumeric strings (strings of letters, numbers, and underscores) are spell-checked tokens. 2. Each token is split into one or more subtokens. Underscores and digits always divide tokens, and capital letters will begin new subtokens. In other words, ``some_variable`` and ``someVariable`` will both generate the subtoken list {``some``, ``variable``}. 3. All subtokens longer than three characters are matched against a set of dictionaries, and a match failure prompts the user for action. When matching against the included English dictionary, *prefix matching* is employed; this choice permits the use of truncated words like ``dict`` as valid subtokens. When applied to code written in most popular programming languages while using typical naming conventions, this algorithm will usually catch many errors without an annoying false positive rate. In an effort to catch more spelling errors, Scspell is able to check each file against a set of dictionary words selected *specifically for that file*. Up to three different sub-dictionaries may be searched for any given file: 1. A natural language dictionary. (Scspell provides an American English dictionary as the default.) 2. A programming language-specific dictionary, intended to contain oddly-spelled keywords and APIs associated with that language. (Scspell provides small default dictionaries for a number of popular programming languages.) 3. A file-specific dictionary, intended to contain uncommon strings which are not likely to be found in more than a handful of unique files.
PackageMaintainerhttps://bugs.opensuse.org
PackageNamepython3-scspell3k
PackageReleasebp156.4.1
PackageVersion2.2
SHA-1B61BA479DD1601E65AD97E80E16A602464E269D6
SHA-2561F4B495B7C1E807FE368CFCE3BCBFED072C4FA197E41C1E18A73F701E48262B1
Key Value
MD5DCAF72489937DCB1972EB7B26E8CC0DB
PackageArchnoarch
PackageDescriptionScspell is a spell checker for source code. This is an unofficial fork (of https://launchpad.net/scspell) that runs on both Python 2 and 3. Scspell does not try to be particularly smart--rather, it does the simplest thing that can possibly work: 1. All alphanumeric strings (strings of letters, numbers, and underscores) are spell-checked tokens. 2. Each token is split into one or more subtokens. Underscores and digits always divide tokens, and capital letters will begin new subtokens. In other words, ``some_variable`` and ``someVariable`` will both generate the subtoken list {``some``, ``variable``}. 3. All subtokens longer than three characters are matched against a set of dictionaries, and a match failure prompts the user for action. When matching against the included English dictionary, *prefix matching* is employed; this choice permits the use of truncated words like ``dict`` as valid subtokens. When applied to code written in most popular programming languages while using typical naming conventions, this algorithm will usually catch many errors without an annoying false positive rate. In an effort to catch more spelling errors, Scspell is able to check each file against a set of dictionary words selected *specifically for that file*. Up to three different sub-dictionaries may be searched for any given file: 1. A natural language dictionary. (Scspell provides an American English dictionary as the default.) 2. A programming language-specific dictionary, intended to contain oddly-spelled keywords and APIs associated with that language. (Scspell provides small default dictionaries for a number of popular programming languages.) 3. A file-specific dictionary, intended to contain uncommon strings which are not likely to be found in more than a handful of unique files.
PackageNamepython3-scspell3k
PackageRelease18.5
PackageVersion2.2
SHA-11500B66A22BE330F391B49B1E7E166EEE62AB164
SHA-25693C9F40713A4E25298FB8330A49FB8A473BC3C5C62E01EA56868883E79CBA481
Key Value
MD50A07C2634E1B47A8CD132A3E1BB2BBDE
PackageArchnoarch
PackageDescriptionScspell is a spell checker for source code. This is an unofficial fork (of https://launchpad.net/scspell) that runs on both Python 2 and 3. Scspell does not try to be particularly smart--rather, it does the simplest thing that can possibly work: 1. All alphanumeric strings (strings of letters, numbers, and underscores) are spell-checked tokens. 2. Each token is split into one or more subtokens. Underscores and digits always divide tokens, and capital letters will begin new subtokens. In other words, ``some_variable`` and ``someVariable`` will both generate the subtoken list {``some``, ``variable``}. 3. All subtokens longer than three characters are matched against a set of dictionaries, and a match failure prompts the user for action. When matching against the included English dictionary, *prefix matching* is employed; this choice permits the use of truncated words like ``dict`` as valid subtokens. When applied to code written in most popular programming languages while using typical naming conventions, this algorithm will usually catch many errors without an annoying false positive rate. In an effort to catch more spelling errors, Scspell is able to check each file against a set of dictionary words selected *specifically for that file*. Up to three different sub-dictionaries may be searched for any given file: 1. A natural language dictionary. (Scspell provides an American English dictionary as the default.) 2. A programming language-specific dictionary, intended to contain oddly-spelled keywords and APIs associated with that language. (Scspell provides small default dictionaries for a number of popular programming languages.) 3. A file-specific dictionary, intended to contain uncommon strings which are not likely to be found in more than a handful of unique files.
PackageNamepython3-scspell3k
PackageRelease2.3
PackageVersion2.2
SHA-11DAA2D0B8234C61E0BE2675286356DD97AF9B84B
SHA-25656DFF6F625F137C889A2E92928B1180C0E870A382A1403EAFB13A3BA6218716F
Key Value
MD5B4EC1225030AC46E0357B3913C25FE4C
PackageArchnoarch
PackageDescriptionScspell is a spell checker for source code. This is an unofficial fork (of https://launchpad.net/scspell) that runs on both Python 2 and 3. Scspell does not try to be particularly smart--rather, it does the simplest thing that can possibly work: 1. All alphanumeric strings (strings of letters, numbers, and underscores) are spell-checked tokens. 2. Each token is split into one or more subtokens. Underscores and digits always divide tokens, and capital letters will begin new subtokens. In other words, ``some_variable`` and ``someVariable`` will both generate the subtoken list {``some``, ``variable``}. 3. All subtokens longer than three characters are matched against a set of dictionaries, and a match failure prompts the user for action. When matching against the included English dictionary, *prefix matching* is employed; this choice permits the use of truncated words like ``dict`` as valid subtokens. When applied to code written in most popular programming languages while using typical naming conventions, this algorithm will usually catch many errors without an annoying false positive rate. In an effort to catch more spelling errors, Scspell is able to check each file against a set of dictionary words selected *specifically for that file*. Up to three different sub-dictionaries may be searched for any given file: 1. A natural language dictionary. (Scspell provides an American English dictionary as the default.) 2. A programming language-specific dictionary, intended to contain oddly-spelled keywords and APIs associated with that language. (Scspell provides small default dictionaries for a number of popular programming languages.) 3. A file-specific dictionary, intended to contain uncommon strings which are not likely to be found in more than a handful of unique files.
PackageMaintainerhttps://bugs.opensuse.org
PackageNamepython3-scspell3k
PackageReleaselp151.1.1
PackageVersion2.2
SHA-1ECA6901C3DC2BDDB60726BF883DDF04575BCD4A9
SHA-25614357068D825AE0A1F76CD6163E7B340EB82C5B6285D6C3C58815B96359EED29
Key Value
MD573DA671D30B56B250BC1F72A2ED07A82
PackageArchnoarch
PackageDescriptionScspell is a spell checker for source code. This is an unofficial fork (of https://launchpad.net/scspell) that runs on both Python 2 and 3. Scspell does not try to be particularly smart--rather, it does the simplest thing that can possibly work: 1. All alphanumeric strings (strings of letters, numbers, and underscores) are spell-checked tokens. 2. Each token is split into one or more subtokens. Underscores and digits always divide tokens, and capital letters will begin new subtokens. In other words, ``some_variable`` and ``someVariable`` will both generate the subtoken list {``some``, ``variable``}. 3. All subtokens longer than three characters are matched against a set of dictionaries, and a match failure prompts the user for action. When matching against the included English dictionary, *prefix matching* is employed; this choice permits the use of truncated words like ``dict`` as valid subtokens. When applied to code written in most popular programming languages while using typical naming conventions, this algorithm will usually catch many errors without an annoying false positive rate. In an effort to catch more spelling errors, Scspell is able to check each file against a set of dictionary words selected *specifically for that file*. Up to three different sub-dictionaries may be searched for any given file: 1. A natural language dictionary. (Scspell provides an American English dictionary as the default.) 2. A programming language-specific dictionary, intended to contain oddly-spelled keywords and APIs associated with that language. (Scspell provides small default dictionaries for a number of popular programming languages.) 3. A file-specific dictionary, intended to contain uncommon strings which are not likely to be found in more than a handful of unique files.
PackageNamepython3-scspell3k
PackageReleaselp151.5.2
PackageVersion2.2
SHA-1DD240195F0A1227F36611F3A6F7B1DBF3F6B8A88
SHA-2563DEFBE18F01450223B2E6255AF0E457A907E5DB18A1F44B679F78AA8703F4323
Key Value
MD570BA86435EF2437DA13ABC76494CC79B
PackageArchnoarch
PackageDescriptionScspell is a spell checker for source code. This is an unofficial fork (of https://launchpad.net/scspell) that runs on both Python 2 and 3. Scspell does not try to be particularly smart--rather, it does the simplest thing that can possibly work: 1. All alphanumeric strings (strings of letters, numbers, and underscores) are spell-checked tokens. 2. Each token is split into one or more subtokens. Underscores and digits always divide tokens, and capital letters will begin new subtokens. In other words, ``some_variable`` and ``someVariable`` will both generate the subtoken list {``some``, ``variable``}. 3. All subtokens longer than three characters are matched against a set of dictionaries, and a match failure prompts the user for action. When matching against the included English dictionary, *prefix matching* is employed; this choice permits the use of truncated words like ``dict`` as valid subtokens. When applied to code written in most popular programming languages while using typical naming conventions, this algorithm will usually catch many errors without an annoying false positive rate. In an effort to catch more spelling errors, Scspell is able to check each file against a set of dictionary words selected *specifically for that file*. Up to three different sub-dictionaries may be searched for any given file: 1. A natural language dictionary. (Scspell provides an American English dictionary as the default.) 2. A programming language-specific dictionary, intended to contain oddly-spelled keywords and APIs associated with that language. (Scspell provides small default dictionaries for a number of popular programming languages.) 3. A file-specific dictionary, intended to contain uncommon strings which are not likely to be found in more than a handful of unique files.
PackageMaintainerhttps://bugs.opensuse.org
PackageNamepython3-scspell3k
PackageReleasebp154.2.20
PackageVersion2.2
SHA-1A5FB74FE29F147C45DB245F7AACE14F617B2A41B
SHA-2568578118D63F1A54EC4806BD2CB00ED56A1A2E14A6AED49D30AD327651180B44B
Key Value
MD55EEED84C4B7417C8A2859CC6692065C0
PackageArchnoarch
PackageDescriptionScspell is a spell checker for source code. This is an unofficial fork (of https://launchpad.net/scspell) that runs on both Python 2 and 3. Scspell does not try to be particularly smart--rather, it does the simplest thing that can possibly work: 1. All alphanumeric strings (strings of letters, numbers, and underscores) are spell-checked tokens. 2. Each token is split into one or more subtokens. Underscores and digits always divide tokens, and capital letters will begin new subtokens. In other words, ``some_variable`` and ``someVariable`` will both generate the subtoken list {``some``, ``variable``}. 3. All subtokens longer than three characters are matched against a set of dictionaries, and a match failure prompts the user for action. When matching against the included English dictionary, *prefix matching* is employed; this choice permits the use of truncated words like ``dict`` as valid subtokens. When applied to code written in most popular programming languages while using typical naming conventions, this algorithm will usually catch many errors without an annoying false positive rate. In an effort to catch more spelling errors, Scspell is able to check each file against a set of dictionary words selected *specifically for that file*. Up to three different sub-dictionaries may be searched for any given file: 1. A natural language dictionary. (Scspell provides an American English dictionary as the default.) 2. A programming language-specific dictionary, intended to contain oddly-spelled keywords and APIs associated with that language. (Scspell provides small default dictionaries for a number of popular programming languages.) 3. A file-specific dictionary, intended to contain uncommon strings which are not likely to be found in more than a handful of unique files.
PackageMaintainerhttps://bugs.opensuse.org
PackageNamepython3-scspell3k
PackageReleaselp152.2.2
PackageVersion2.2
SHA-16F25052B5263E9514D6154AF0C816486D5827586
SHA-2565432B61AFC10CB80FCA36DD38507E2E1C7A6F025271C243BA68F7EE394E01FE0
Key Value
MD50D349E3C613CCCAC03F42F64A8E59C5C
PackageArchnoarch
PackageDescriptionScspell is a spell checker for source code. This is an unofficial fork (of https://launchpad.net/scspell) that runs on both Python 2 and 3. Scspell does not try to be particularly smart--rather, it does the simplest thing that can possibly work: 1. All alphanumeric strings (strings of letters, numbers, and underscores) are spell-checked tokens. 2. Each token is split into one or more subtokens. Underscores and digits always divide tokens, and capital letters will begin new subtokens. In other words, ``some_variable`` and ``someVariable`` will both generate the subtoken list {``some``, ``variable``}. 3. All subtokens longer than three characters are matched against a set of dictionaries, and a match failure prompts the user for action. When matching against the included English dictionary, *prefix matching* is employed; this choice permits the use of truncated words like ``dict`` as valid subtokens. When applied to code written in most popular programming languages while using typical naming conventions, this algorithm will usually catch many errors without an annoying false positive rate. In an effort to catch more spelling errors, Scspell is able to check each file against a set of dictionary words selected *specifically for that file*. Up to three different sub-dictionaries may be searched for any given file: 1. A natural language dictionary. (Scspell provides an American English dictionary as the default.) 2. A programming language-specific dictionary, intended to contain oddly-spelled keywords and APIs associated with that language. (Scspell provides small default dictionaries for a number of popular programming languages.) 3. A file-specific dictionary, intended to contain uncommon strings which are not likely to be found in more than a handful of unique files.
PackageMaintainerhttps://bugs.opensuse.org
PackageNamepython3-scspell3k
PackageReleasebp155.3.12
PackageVersion2.2
SHA-19F7D30710E33A1B9F13C649D47442D38232A60F7
SHA-256E5432C045B39905F944BBFD5720528375653C3ECDD9C9EEA9237C7C96DE02B02
Key Value
MD5CF49F3C9BB5068E79DA574F84CB0BC5C
PackageArchnoarch
PackageDescriptionScspell is a spell checker for source code. This is an unofficial fork (of https://launchpad.net/scspell) that runs on both Python 2 and 3. Scspell does not try to be particularly smart--rather, it does the simplest thing that can possibly work: 1. All alphanumeric strings (strings of letters, numbers, and underscores) are spell-checked tokens. 2. Each token is split into one or more subtokens. Underscores and digits always divide tokens, and capital letters will begin new subtokens. In other words, ``some_variable`` and ``someVariable`` will both generate the subtoken list {``some``, ``variable``}. 3. All subtokens longer than three characters are matched against a set of dictionaries, and a match failure prompts the user for action. When matching against the included English dictionary, *prefix matching* is employed; this choice permits the use of truncated words like ``dict`` as valid subtokens. When applied to code written in most popular programming languages while using typical naming conventions, this algorithm will usually catch many errors without an annoying false positive rate. In an effort to catch more spelling errors, Scspell is able to check each file against a set of dictionary words selected *specifically for that file*. Up to three different sub-dictionaries may be searched for any given file: 1. A natural language dictionary. (Scspell provides an American English dictionary as the default.) 2. A programming language-specific dictionary, intended to contain oddly-spelled keywords and APIs associated with that language. (Scspell provides small default dictionaries for a number of popular programming languages.) 3. A file-specific dictionary, intended to contain uncommon strings which are not likely to be found in more than a handful of unique files.
PackageNamepython3-scspell3k
PackageReleaselp150.2.1
PackageVersion2.2
SHA-18E3CD4ADF14117A2F2DE5993115DC36E9A681433
SHA-25609698D2457AC0E1F32B2FF586BB0D079396D41F3A64EF9858B2A26C1A720FE36
Key Value
MD520EFA34D64F41C8466632A1513F31058
PackageArchnoarch
PackageDescriptionScspell is a spell checker for source code. This is an unofficial fork (of https://launchpad.net/scspell) that runs on both Python 2 and 3. Scspell does not try to be particularly smart--rather, it does the simplest thing that can possibly work: 1. All alphanumeric strings (strings of letters, numbers, and underscores) are spell-checked tokens. 2. Each token is split into one or more subtokens. Underscores and digits always divide tokens, and capital letters will begin new subtokens. In other words, ``some_variable`` and ``someVariable`` will both generate the subtoken list {``some``, ``variable``}. 3. All subtokens longer than three characters are matched against a set of dictionaries, and a match failure prompts the user for action. When matching against the included English dictionary, *prefix matching* is employed; this choice permits the use of truncated words like ``dict`` as valid subtokens. When applied to code written in most popular programming languages while using typical naming conventions, this algorithm will usually catch many errors without an annoying false positive rate. In an effort to catch more spelling errors, Scspell is able to check each file against a set of dictionary words selected *specifically for that file*. Up to three different sub-dictionaries may be searched for any given file: 1. A natural language dictionary. (Scspell provides an American English dictionary as the default.) 2. A programming language-specific dictionary, intended to contain oddly-spelled keywords and APIs associated with that language. (Scspell provides small default dictionaries for a number of popular programming languages.) 3. A file-specific dictionary, intended to contain uncommon strings which are not likely to be found in more than a handful of unique files.
PackageNamepython3-scspell3k
PackageReleaselp151.18.1
PackageVersion2.2
SHA-18FA955E5167B983EC2CB24C90D86B712A314ACE7
SHA-256140BEFFC39668160D6EC337E1B7DF50A62F4470CBB48499588D1285BA8424504