Result for 8C4384E799329BC997F3CC8E321C245567459960

Query result

Key Value
MD5F893B4A16569BEF48801B5B05537D3A3
PackageArchppc64
PackageDescriptionScikit-learn integrates machine learning algorithms in the tightly-knit scientific Python world, building upon numpy, scipy, and matplotlib. As a machine-learning module, it provides versatile tools for data mining and analysis in any field of science and engineering. It strives to be simple and efficient, accessible to everybody, and reusable in various contexts.
PackageMaintainerFedora Project
PackageNamepython-scikit-learn
PackageRelease1.fc21
PackageVersion0.15.2
SHA-18C4384E799329BC997F3CC8E321C245567459960
SHA-2564DA8081B9463672716205548A3E0F9A00C124DF7A39A139A9F885DB9BD0DA9B7
hashlookup:children-total906
hashlookup:trust50

Network graph view

Children (Total: 906)

The searched file hash includes 906 children files known and seen by metalookup. A sample is included below:

Key Value
FileName./usr/lib64/python3.4/site-packages/sklearn/ensemble/tests/test_forest.py
FileSize17601
MD5856C9EB5C6357A8E978BB27ED478B14D
SHA-10001980ED073FFA12C4D97EE33F9FC4D4A9FF043
SHA-25695CDF4DE2328FC18906E92054FE52629B8B6B99CEF8992750C9EA14D9533FA72
SSDEEP384:RmH3A2etKtuw8ixVT17yl8iMX5nITJojVpKv+66wLoVE/wpL+:RmH3A/tKtuw9xVT17yl8NX5nITJojVpu
TLSHT18482D703F8960D595B53297E24DE510827956B1B860818753EFFD0086F9462CB3FBBBE
Key Value
FileName./usr/lib64/python3.4/site-packages/sklearn/linear_model/ransac.py
FileSize13952
MD567B38A5B19534C15626BEDDA27CE70D0
SHA-1000C0BD44626C1E94A98B9CB8615101BC35C180F
SHA-256526176561F560882ECAE0B67F451191EBFC36F7E9228B327F61452F553983492
SSDEEP192:1axKzOGnKFnGWjPfIAeMl0Bgox2WGZHO6qWKNRKES6dIhBNRERZCoNbk7A:oK68KRTfIAXkaHRKS6aBsRZhb7
TLSHT17F52940568203B374A87B5B068DE010BC77918A79686A4757CFCC3AD1F6297873ADBD8
Key Value
FileName./usr/lib/python3/dist-packages/sklearn/utils/sparsetools/_graph_validation.py
FileSize2407
MD56CCA3A2DFA57FF6AF3CF3A27AE22F209
SHA-101070C25205C477A297A7CCE48DA78871F64DD2C
SHA-256298C9425EE8888DD03C6A32021051C1ACE1D8C45775B277F0095589690515DD8
SSDEEP48:PLdf167rziXSwtpF8AyEv9iVfkZY2MiV8K2pq:DL6fep8AJYVfkZLFKtpq
TLSHT1FE41FE25932D0564D16380E48C83A70E1AD8F6073F67242DF4EEBC682F3861C63257BD
Key Value
FileName./usr/share/doc/python-sklearn-doc/stable/_downloads/plot_polynomial_interpolation.py
FileSize1895
MD5A4CC2943F64D2730EF80B9504C583D19
SHA-1011BDEF5443BE65B5EC29C9D37FCEEC7206429FA
SHA-2562B12D9E9919C21B4BFF58007AB9F645B717AE7749E79099AFBB8B253B5A3ABFC
SSDEEP48:3b/2fr4glFa11YCuArC18AlcCxaD+1sozVGsA9MGNr:z0lAO18gcCE+BgPr
TLSHT15541B9092E55E82107364074B6F898616E19046EAE8305663DCDBE301B42B0F3D3BF47
Key Value
FileName./usr/share/doc/python3-scikit-learn/examples/cluster/plot_cluster_comparison.py
FileSize4865
MD5919283D95801BDB1582E6768ADC62A65
SHA-10145D31CB950A8CC679300AF4CF93EC48DE5D612
SHA-25664C861D3DC5FE9F11F44F2AA5A86FF15BEB60B26B7974895663F37DC729039C3
SSDEEP96:hLrD8Hd/MIsALpqtjAFejIHXSNIuGytASwTgSNexmDDz4bW:h4nVBgZ/6tLQW
TLSHT176A1857167126117EF93B09A4EB751E837946057075028AAB52CC3254F0BB3CB3F2B9B
Key Value
FileName./usr/share/doc/python3-scikit-learn/examples/exercises/plot_cv_digits.py
FileSize1207
MD5C21A69A2BC54F263E69035C048095865
SHA-1016D65381370139D98DCC375AACCF083CD195B82
SHA-256657225AA5357703DBAC9E250E5690997774CA4C566BC32D257203E93FCAB5E17
SSDEEP24:akV7BmSxOgUWqNqag5YEA5BRklGiVQ+zAsyPs1J:akaSVUNJEMBRkbuWyOJ
TLSHT1B621DC0CBAA6B2780B9284B4FC44507137E393106708683E78ABDC6D5646F372B61CB2
Key Value
FileName./usr/lib64/python2.7/site-packages/sklearn/manifold/locally_linear.pyo
FileSize21863
MD591757DCF694FAA02771CCB2B96A6D4B1
SHA-10170BFA66B1E1597E7334F62899FE84D7AE71C34
SHA-256A4909F64E71BC50AC47A4D89A4E762E5109A13845048454E17FACA79EDC6B71E
SSDEEP384:iUlMUhLDXzSPM/iVcAIWAflCq2/hTG7g8s2+8KeASs2ueOm+AK7AlRkfsk2Jk:iUlJtDXG0/i6JpflCP/hS7gg+8JK2uo+
TLSHT1E5A2E8256F86665A9861E232B8F00217DFB4F677A5822B4275EDD1383FC1365D36E3C0
Key Value
FileName./usr/share/doc/python-sklearn-doc/stable/_downloads/plot_swissroll.py
FileSize1446
MD56C764C92907310B7717595E840304798
SHA-10193A74906128D26183FB66001B61CA5D447B865
SHA-2565D7791C51D76DD46308EE5B4B799509831C1EEDC2D767C39B78E7E98A39B066D
SSDEEP24:x2RAnm7PXQ2KQsFe3M/MDyC5NJYTC4aeujm5tSU3+LVJU3+PbYY1+BZjs:xEAn12KED3JLe0atSfJNYYqs
TLSHT116313F1C2E07B27697A2F0E83E6417DDEB515A009F2044F8B83D68F45381B7CB82D51B
Key Value
FileName./usr/lib64/python2.7/site-packages/sklearn/metrics/cluster/tests/test_supervised.pyo
FileSize8394
MD597EF8A4E06A78F2B2C5A89C0A41D7785
SHA-101D17B7A13B8E99CB6643D3178BB595F86FFE122
SHA-25624B2746DD30802721EEBC4931772DAC6D0100892133AF1EE879CCA8988E1E029
SSDEEP192:zj/NNftgM8m49hMecYu8iF7E+2uKdyKS13DQ8888888SwG:zBFy9aelu8yEduXKWE8888888SwG
TLSHT19702EE91A3E24F8BC4B411B9F9F04323ED95F9767E107741196ED03C2BC876AA52A3C6
Key Value
FileName./usr/lib64/python2.7/site-packages/sklearn/utils/sparsetools/setup.pyo
FileSize1001
MD52590FC9826A8A9045E42054899E1A886
SHA-1020FD14B145F2891357EA78603DE455AE3DF0CB9
SHA-256518D7F2A0B86634A546305A3D47AD52E97AE8F9EBA3994678FE12F6CA3A1B237
SSDEEP24:4L1ttm6UklmA3orTm6ZiM69lrtM23KkmiMvz2Y7k:4L1gkSZBar62aFB72gk
TLSHT1C011E181D3FD4F97C4B20678906881634EE8F97B9E819B846664FC593CCC7B6832714D